Lattice-induced double-valley degeneracy lifting in graphene by a magnetic field.

نویسندگان

  • Igor A Luk'yanchuk
  • Alexander M Bratkovsky
چکیده

We show that the recently discovered double-valley splitting of the Landau levels in the quantum Hall effect in graphene can be explained as the perturbative orbital interaction of intravalley and intervalley microscopic orbital currents with a magnetic field. This effect is facilitated by the translationally noninvariant terms that correspond to graphene's crystallographic honeycomb symmetry but do not exist in the relativistic theory of massless Dirac fermions in quantum electrodynamics. We discuss recent data in view of these findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene Rings in Magnetic Fields: Aharonov-Bohm Effect and Valley Splitting

We study the conductance of mesoscopic graphene rings in the presence of a perpendicular magnetic field by means of numerical calculations based on a tightbinding model. First, we consider the magnetoconductance of such rings and observe the Aharonov-Bohm effect. We investigate different regimes of the magnetic flux up to the quantum Hall regime, where the Aharonov-Bohm oscillations are suppres...

متن کامل

Parity and valley degeneracy in multilayer graphene

We study spatial symmetry in general ABA-stacked multilayer graphene to illustrate how electronic spectra at the two valleys are related in a magnetic field. We show that the lattice of multilayers with an even number of layers as well as that of monolayer graphene satisfy spatial inversion symmetry, which rigorously guarantees valley degeneracy in the absence of time-reversal symmetry. A multi...

متن کامل

Graphene rings in magnetic fields

We study the conductance of mesoscopic graphene rings in the presence of a perpendicular magnetic field by means of numerical calculations based on a tight-binding model. First, we consider the magnetoconductance of such rings and observe the Aharonov–Bohm effect. We investigate different regimes of the magnetic flux up to the quantum Hall regime, where the Aharonov–Bohm oscillations are suppre...

متن کامل

Quantum transport in chemically functionalized graphene at high magnetic field: defect-induced critical states and breakdown of electron-hole symmetry

Unconventional magnetotransport fingerprints in the quantum Hall regime (with applied magnetic fields from one to several tens of Tesla) in chemically functionalized graphene are reported. Upon chemical adsorption of monoatomic oxygen (from 0.5% to few percents), the electron-hole symmetry of Landau levels (LLs) is broken, while a double-peaked conductivity develops at lowenergy, resulting from...

متن کامل

Splitting of critical energies in the n=0 Landau level of graphene

The lifting of the degeneracy of the states from the graphene n=0 Landau level (LL) is investigated through a non-interacting tight-binding model with random hoppings. A disorder-driven splitting of two bands and of two critical energies is observed by means of density of states and participation ratio calculations. The analysis of the probability densities of the states within the n=0 LL provi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 100 17  شماره 

صفحات  -

تاریخ انتشار 2008